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The pure theory of large two-candidate elections

JOHN 0. LEDYARD*

INTRODUCTION

A long-standing goal of political theorists has been the development of
a coherent, consistent, and nonvacuous theory of elections, particularly
of those using majority rule. If possible, such a theory is to be based
on rational individual and group behavior. In spite of extensive
effort, recent writings (see, for example, Ordeshook and Shepsle, 1982)
reveal that many may now be prepared to give up this research program on
the grounds that no such model exists. There appear to be two main
stumbling blocks to a consistent theory based on the rational behavior
of participants: (1) ‘the theoretical proposition that, given any
realistic assumption about the cost of voting, rational voters will not
participate in elections, and (2) even if they vote, majority-rule
equilibria rarely exist. The first result is obviously contradicted by
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the facts; the second means that the theory as we know it fis
fundamentally flawed. Faced with these results, those who have not
given up on political theory altogether have gone in two other obvious
directions. They have either given up on “rational" behavior (see, for
example, Hinich et al., 1972; Coughlin, 1979), or they have given up on
*equilibrium" models and have turned to "process" models (for example,
Kramer, 1977.) .

It is my belief that this retreat is premature. [n particular, I
intend to show in this paper that even under assumptions of extremely
rational behavior, it is possible to combine voters, who may or may not
vote depending on the benefits and costs, with candidates who game
against one another and end with equilibria which not only exist but
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also have a remarkable social-welfare property. The approach is a
straigktforward extension of the now standard spatial competition model
of elevtions. Voters have preferences (utility functions) over issues,
candidites choose a platform (a point in the issue space), and then
voters vote for their most preferred candidate--in two-candidate e-
lections--if and only if the expected benefits from so doing outweigh
the costs. Given this voter behavior, candidates are assumed to maxi-
mize expected plurality (a very good approximation of the probability of
winning). A full general equilibrium occurs when no voter or candidate
wishes to alter his strategy.

To show where the theory posed in this paper fits into the 1itera-
ture on the theory of majority-rule elections, I refer the reader to
Figure 1 in which existing theories are divided into four "boxes" de-
pending upon the assumptions concerning voting behavior. In the tra-
ditional theory it is assumed that all vote (no abstentions) and that
choice behavior is rational (some form of utility maximlzailon). It s
this theory for which equilibria rarely exist. Hinich et al. changed
both of these behavioral hypotheses by allowing abstentions due to
indifference, alienation, etc. and by modeling the decision to vote as
probabilistic while leaving the choice of candidate based on utility.
Although equilibria exist in this modification, voting behavior f{s
somewhat ad hoc and certainly not rational-choice-based. = Coughlin
maintained the traditional assumption of no abstentions but removed the

voter's choice of candidate from rational theory. Instead, he adopted i

the decision-theoretic-framework of Luce (1959, 1977) by assuming thati
choice is probabilistic, where probabilities are proportional to utili-"~
ty. With this model of voter behavior, equilibria exist and have no

interesting welfare property albeit different from that in this paper.. .

It is not known what occurs in Coughlin's models {f abstentions are
allowed.'

The model in this paper departs from the traditional by allowing

——
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rational abstention behavior.? We begin by recognizing the obvious fact
that when voters make the decision to vote, they do not know how many

others have voted, or plan to vote, or, especially, how the others have ‘

voted. They face a decision -- or better, a game -- under uncertainty
similar in spirit to a sealed-bid auction. In modeling this simultane-
ous decision problem for all voters we impose as much rationality as
possible -- rational choice and rational expectations -- and arrive at a

model in which turnout is neither the 100% nor the 0% that has tra-

ditionally been implied by rational-choice models. [t is this model of
the voters' behavior which constitutes the "new" component of the theory
in this paper. Most of the rest of our model is standard, although the
implications derived from this combination of new and old are not.

In Section I we describe the pehavior of a single voter in much the
same way as that posed by Downs (1957), Tullock (1967), and others. In
section I we consider the simultaneous behavior of all voters and
present the equilibrium concept first introduced in Ledyard (1981), In
section II1 we define and describe both the behavior of candidates and
the equilibrium which arises when all actors -- candidates and voters --
are combined into a general equilibrium. In section IV we explore the
welfare properties of those equilibria, 1in section V we examine the
existence of equilibrium, and concluding remarks are added in Section
vI.

I. THE VOTER

The voter is assumed to choose whether to vote or abstain, as well as
for whom to vote, consistent with the expected utility hypothesis. This

model has already received much attention in the literature so [ will,
not dwell on its rationale but will immediately turn to the notation and |

definitions. The {interested reader can consult Ferejohn and Fiorina
(1974) for a good survey.

e

2! am finally answering the complaints of Slutsky (1975) about the ad hoc and
unreal istic nature of our eoriier paper (Hinich et al., 1972). In spite of my efforts he
remains unconvinced of the nreality" of the model,
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We assume now that there are only two candidates, A and B. Candi-
date A chooses a platform which we denote by A and candidate B chooses &
platform denoted by B. We assume that the voter knows the candidates'
choices and has a utility function over all possible platforms, R, given
by u(R, x) where x represents the appropriate utility parameters for
this voter. We assume throughout that u is continuous in R, We
sometimes call x the "type" of this voter. If this voter decides to go
to the polls, he will cast his vote for A over B if and only if u(A, x)
> u(B, x). We assume the voter receives no consumption benefit from
voting. T-erefore, whether this voter will vote instead of abstaining
depends on a simple benefit-cost calculation. The expected benefits
from voting are equal to the probability of affecting the outcome times
the gain from so doing. Letting P be the probability that this particu-
lar yoter will alter the outcome, and assuming that u(A, x) > u(B, x),
the expected benefits are (P)}(u(A, x) - u(8, x))/2. The utility differ-
ence is divided by 2, since a voter affects the outcome only if he
creates a tie or breaks one. Assuming that ties are broken by a fair
coin toss, the gain from either event is the utility difference divided
by 2. We assume that the voter faces a known cost of voting equal to ¢
> 0 and that this cost enters the utility calculation 1linearly.
Therefore, if candidate A wins and the voter had gone to the poll, he
receives u{A, x) - c in utiiity.

in order to comp]ete this mode) of rational-voting behavior, we
must provide a basis for the voter's beliefs about Pa and Pb' where PJ
is the probability that candidate j either ties the other or loses by
one vote. We assume, at this point, that the voter knows the probabili-
ty that a voter, randomly selected from all other voters, will vote for
A, vote for B, or abstain. (We will see in the next section how these
can be estimated.) Using these probabilities, denoted, respectively,
Qas Qp and Qy, where Q + Q@ + Qp = 1, it is a standard exercise to
calculate the probability of a tie when there are n other voters. It is
also easy to calculate»fhe probability that A loses to B by one vote.
Adding these we find that P, = £(Q,, Qb) where f(z, y) =

n
151 n-1
2" __n! n2k, V2V K k+1

Lk
Iy=0 RTRIn-2kT 2 ¥ (1-2-9)7 74 g TTaTTcn2k-112 Y (1-2-) "2
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A symmetric calculation yields Py = f(Qb. Qa)' Gathering this all
together we have described the voter. -

A voter with characteristics (x, c) who is faced with a choice
between two candidates, A and B, and who thinks the probability that a
randomly selected voter will vote for candidate j is Qj will

(a) vote for A if ¢ < (Pa/Z)(u(A, x) - u(B, x)),
(b) vote for B is c < (Py/2)(u(B, x) - u(A, x)),
(c}) abstain otherwise,

where P, = f(Q,, Q). Py = F(Qy Q,) and f is defined abave.

This model assumes rational behavior in the form of expected utili-
ty maximization, no income effects, no candidate specific preferences
other than the platform choice, positive costs of voting, and knowledge
by the voter of x, c, A, B, P,, and Pye

At this point most writers reach an unsettling conclusion, "Since
the expected benefit from voting is obviously small (if 0d = Qb and Q0 =
0 then P, and P, are of order of magnitude 1/2n -- see Chamberlain and
Rothschild, 1981), and since the cost of voting is not small, no ration-
al voter will ever vote in large elections. Therefore, something must
be wrong with the theory." This is not an unreasonable conclusion but
the analysis is incomplete, since it is based on a partial equilibrium
view which is simply not appropriate. [f this voter and others are
embedded in a general equilibrium model, the apparent failure of ration-
al choice to explain voting disappears. We turn to that task next.

I1. RATIONAL VOTERS' EQUILIBRIUM

We now explore what happens when voters take into account the fact that
other voters are also rational. The logic is simple and compelling and
is contained in Ferejohn and Fiorina (1974). If everyone is rational
and carries out the partial equilibrium calculus in the previous section
then, presumably, no one will vote. But then the probability of a tie
is 1. If this is true and if these same rational, partial equilibrium
nonvoters redo their calculus, most will find that it is now definitely
in their interest to vote; they will be able to determine the outcome by
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themselves. And so on. Somewhere between no one voting and everyone
voting lies a situation in which some vote and in which the probability
of a tie is consistent with those numbers and with the beliefs of all
voters. It is this stable, rational, intermediate situation that we
capture in the‘ vgters' gquilibrium defined below.

To close the partial equilibrium model in the previous section, it
remain; only to specify how a voter estimates Qa and Qb. We assume that
it is ccmmon knowledge among all voters that each voter is rational and,
therefore, that each follows the model of Section I. What is not known
to each voter, and never will be, are the values of the others' charac-
teristics (x, c¢). We do, however, assume that the distribution of these
characteristics 1is known to all by the density functions h(c) and
9(x). That is, c and x are independently distributed, where g(x) is the
probability that a randomly selected voter will have characteristic Xs
and h(c) is the probability that a randomly selected voter-will have a
cost of voting equal to c¢.>

Given these densities, one can compute the probability that a
randomly selected voter will vote for a candidate. We already know that

the voter will vote for A if and only if her characteristic, (x, c),
satisfies

¢ < (Py/2)Tu(A, x) - u(B, x)).

Using the densities g and h we can compute that the probability of this
ist

Q = Jxu(a,B)H((Po/2) (u(A,x) - u(B,x)))g(x)dx

where X+(A,B) = {x]u(A,x) > u(B,x)} and H(r) = [{ h(c)dc. Writing this

e e et
. The assumption of independence is made only for expositional convenience, The eager
eader can easily show that correlation between ¢ and x in a density function like g(x, c)

can be accommodated without destroying the results detailed below,

4
Note that it A = B, then Oa = 0 since U(A, x) = U(B, x), and H(0) = O,
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as Q, = t(Pas A, 8; g, h), it is easy to show that Q = t(Pys B, As g,
h) and Qg = 1 - Qg - Q-

We can thus compute Q, and Q, from P, and Pye In the previaus
section we computed Pa and Py from Qq and Q. A fully rational voter
with fully rational expectations will require these calculations to be
consistent with one another and will be able to compute the values of Q
and P for which consistency obtains.

Given the densities on characteristics, h and g, and given the
candidate platforms A and B, we call <Pa'Pb’Qa'°b> a RATIONAL VOTERS'
EQUILIBRIUM if and only if

o
[

5 = F(Q40p) and Py = F(Qy,0,) and

Q, = t(Py.A.Big,h) and Qy = t(Py,B,R39,h),

where f( , ) is defined in section 1 and t(r,s,wig,h) is defined above.
As an aside the reader should note that if we were to model the

voters as playing a game of incomplete information, as is done in

modeling auctions, the three pure strategies would be vote A, vote B,

and abstain, and the Bayes equilibria of that game would be exactly the
Rational Voters' Equilibrium defined above. [ chose the approach above

for its expositional simplicity.
To compiete this section, we consider several properties of the
rational voters' equilibrium.

PROPOSITION 1: (EXISTENCE). If H(c)eC (that is, if H is continuous),
then a rational voters' equilibrium exists.

PROOF: If A = B, then Q3 = Q, = 0, Py =Py = 1 is an equilibrium,
If A + B, then define the functions P, = NL(P,.Pp) =
f(t(Pa,A,B),t(Pb,B,A)) and Py = NZ(Pa,Pb) = f(t(Pb,B,A).t(Pa.A,B)). It
is easy to show that Nl and N2 are continuous in (PasPp) since f is
polynomial and therefore continuous, while t is continuous in P since H
{s by assumption. Further, N1 and N2 map (0,1]x[0,1] into itself.
Therefore, Brouwer's fixed-point theorem can be appited. There is at
least one pair P* = (Pa*,Pb*) such that pr = N(P*). Let Q,* =
t(Pa*.A,B) and Q* = t(Pb*,B,A). Then (P*,Q*) 1s a rational voters'

15

equilibrium.
Q.t.D.

PROPOSITION 2: (SYMMETRY). (PasPpsQa.Qp) s a rational voters' equi-
1ibrium givan (A,B) 1f and only if (Pb'Pa'Qb'Qa) is a rational voters'
equilibrium given (8,A).
PROOF: Immediate.
Q.E.D.

This is the first of several propositions concerning the symmetry
of the model in this paper. The primary reason for symmetry is that we
have assumed that voters care about the platform which candidates adopt
and not the name of the candidate.

The next property is of interest for its implications about the
voting probabilities in equilibrium.

PROPOSITION 3: In any rational voters’ equitibrium, (P, - Pp) = (Qy -
Q,)F where F>=0.

PROOF: P, - Pp = F(Qq.Qp) - F(Qp.Q4) =

L

i 3 n! k K n-2k-1
Q,9) I 2o wmoeTiazeTy * Y (%) .

q.€.D.
It should be noted for completeness that f = 0 if and only if the
number of voters is.even and Q, + qQ, = 1, (i.e., turnout is 100%) .
Anotter interesting property of eqdillbrium is uniqueness, or lack
thereof. We have two propositions to present, both of which depend on
the turnout probabilities.

Definftion: (Maximum Turnout Probability). Given the
candidates platforms, A and 8, and given the distribution
of voters' characteristics, we can compute an upper limit
on turnout which is independent of the particular voter
equilibrium arrived at. In particular, let

M{(A,B,g,h) = JH{(1/2)1u(A,x) - u(B8,x)1)g(x)dx.
We call M( ) the maximum turnout probability.
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We have defined M( )} this way since M is the probability that a
randomly selected voter will go to the polis if he thinks the probabili-
ty of a tie is 1. To see this, remember that

0y + O = Fxan,g) M (Pa/2)W(AX) - u(B,x)))g(x)dx

+ IX+(B,A)H((pb/2)(U(B'X) - u(A,x)))g{x)dx.

Let Pa = Pb = 1. The observation follows immediately, since H is a
distribution function and H' 2 0.

M( ) = 0 if no rational voter will go to the polls even when the
probability of influencing the election is 1. For an example, assume
H(0) = 0 and let A = B.

PROPOSITION 4: (UNIQUENESS 1). If M(A,B,g,h) = O then (1,1,0,0) is the
unique rational voters" equilibrium.

PROOF: Under the hypothesis, Q, = Q = 0 for all values of P, and Py
since H(c) 2 H{c') whenever ¢ > c'. But if Q, and Q, are 0 it follows
that P, = Py = 1.

Q.t.D.

It would be helpful if we were also able to exhibit a proposition
listing sufficient conditions for the uniqueness of the voter equilibri-
um when the maximum turnout probability is positive. Unfortunately, I
have not yet discovered such a result. It is true, however, that if the
candidates' platforms are ciose enough, then M is near O and the equi-
1ibrium will be both unique and continuous in (A,B).

PROPOSITION 5: (UNIQUENESS 2). Suppose M(A,B,g,h) > O, u( .x)cCl for
all x, and H(c)cC1 for all c. If M(A,B,g,h) is near O, (which is true,
for example, if A is near B), the equilibrium (Pa-Pb'Qa'Qb) is unique
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and is C! in A and B (for A } B).?
PROOF: Let Qa(Py) = t(P,,A,B) and Qy(Py) = t(P,.B,A). (P,Q) is an
equilibrium if and only if P solves

Pa = f(qa(Pa)t(]b(Pb)) =0 and

Py - f(Qb(Pb)'Qa(Pa)) = 0. The Jacobian of this system of
equations is

- 60,000 - f,0,8)0
- £,(0,,0)0; 1 - f,(9.,0)0

Q; = aQ,/aP, = afx+h[(Pa/2)(u(A,x) - u(8,x)}1 g(x{ dx/aP,

= [ PR - U@} 50 BN - UE) ) ax

Since this integral is taken over x*, its value is positive. Similarly
for Qg. From Ledyard (1981) we know that

n-1
2 ! k-1 k -2k-1
Q) =01 " erezeTr ¢ Y (exen)”
|ﬂ%l| ! k 2k-1
n k n-2k-
-1, Wi XY ()
- n(1-x-y)"!
50 and Q_ may have discontinuous derivatives at A = B, | thank Peter Coughlin for

noting this in an eariier version,



18

and

n
lf' n-2k

1 -1 k-
fZ(X.Y) = (x-y) | 1 FTF:T?ﬁ:?ET xk 1yk 1(1-x-y)

From these it can be seen that the signs of fy are:

£1000.0)  f2(05:Q) £1(Qy:Q,) £5(Qp.0Qy)

if Q,7Qp - + ? -
if Q,=Qp - 0 -
if Q6<Qb ? - - +

Since f,, fp are continuous if Q, is near Q, then fl(qa-ob) < 0 and
£1(Qp.Qq) < 0. Therefore,

for Qp>Qy J = |+ +|

i
—
o+
+ O
a—

for Qu=Qp  J

for <y J =

Now we know that any sojution must satisfy 0 sQy =Qp = M(A,B), and
QysQp 2 0. Therefore, IQa - le < M(A,B) and if M(A,B) is small
enough, Q, is always near Q.

J is positive definite for all such Q,.Qp- Therefore, the equilibrium
is unique. (Gale-Nikaido, 1965)

Continuity follows from the Implicit Function Theorem

. oL Q.€.D.

To summarize, if the maximum turnout probability is small enough
(or if the candidates' platforms are close enough), the voter equilibri-
um is unique and C1 in the platforms, [ do not know how close is
"enough." If A is not near B, it seems that muitiple equilibria may be

|+ +| |
-+ .
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possible.

A final comment seems in order about the amount of turnout pre-
dicted by this model, We have seen that if the maximum turnout proba-
pility is 0 or if A = B, then turnout is predicted to be 0, Since we
nave adopted a rational behavior hypothesis, one might suspect that, in
fact, turnout is never positive. Such a suspicion would be false.

PROPOSITION 6: (POSITIVE EXPECTED TURNOUT). If the maximum turnout
probability {s positive, given A and B, then expected turnout is posi-
tive in any rational voters' equilibrium.

PROOF: Remember that expected turnout is (n + l)(Oa + Qb). Suppose
that Qq + Cp = 0. Then Q3 = Q = O. But f(0,0) = 1. ‘Therefore, P, =
Py = 1. t- follows that expected turnout is then (n + 1)M(A,8) > O
which is a contradiction.

Q.E.D.
Corollary: If there is a set of x, with positive measure, such that
u(A,x) - u{b,x) # 0 and if H(c) > 0 when ¢ > O (i.e., h(c) > O for all
¢ 2 = 0), then expected turnout will be positive in equilibriﬁm. M( )
gives an upper-bound on expected turnout.

Thus, contrary to naive expectations based on partfal equilibrium
analysis, a rational general equilibrium consideration of voting be-
havior yields positive turnout in equilibrium unless each voter refuses
to vote even when he knows he is the only voter,

ITI. THE CANDIDATE AND THE ELECTION EQUILIBRIUM

In this section, we model how candidates determine their platforms and,
therefore, the outcome of the election. We begin by considering what
motivates the candidates. Since this is a static model and since we
have been assuming that platforms will be implemented and that the
extent of implementation does not depend on the margin of victory, it
seems reaionable to assume that these candidates care, ex post, only
about winaing. The appropriate outcome space then is simply the two-
point set [W,L} = [win,lose}. The simultaneous choice of platforms by
the candidates determines a probability distribution (Ry,Rp) on this set
and the rational, expected utility-maximizing candidate A will choose
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the platform to maximize Ry*V(W) + Ry*V(L). Thus, this candidate will
always choose to maximize the probability of winning. We assume that
these candidates know the model of the previous section, or at least act
as if they know it. From that model they can determine an election-
outcome function, or, more properly, an outcome correspondence, which
maps pairs of pilatforms (A,B) into sets of 4-tuples (Pa,Pb,Qa.Qb). It
is possible for candidates to compute various implications of their
choices such as the probability of winning.

The probability A wins
Given A,B, h(c), and g(x), and a rational voters' equilibrium of a two-
candidate election, the probability that A wins is:

[gl n-2k+1 n+1! k+r k n-2k-r+1
Ra= Lo, Zrzl kTR nezk T (Q) T (Q) " (1-0,-0g) "2k T
1 [n;ll 1! Koq 1k 2k+1
*2l k=0 K! Rz (Q)" ()" (1-0,-0g)" 2

where Q,(A,B) and Qy(A,B) are the appropriate parts of a rational voter
equilibrium for A,B.

Although the analysis can be carried out using it, this is a re-
markably unwieldly function. To simplify, let us use an approximation
of Ry which is appropriate for large elections. (See Hinich, 1977.) If
n is large, then Q,-Qp is a good approximation for a candidate to use in
place of Ra- To see this, let Sy = 1 if voter 1 votes for A, Sj =0 if
i abstains, and S§ = -1 if i votes for B. Then A wins if and only if

n+l )
21 5; > 0. This is true if and only if
i:

n+l
(1/(n + 1)) 121 §, = S>0. Since the S; are independently and
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identically distributed, it follows from a Law of Large Numbers that

1 1F Qy > Qy
Vim Pr (5> 0) = 172 9f Q4 = Q
n+ o 01f0a<0b.

Therefore, maximizing Qa - Qb maximizes (in the 1imit) the probability
that A wins. Using this approximation, we posit the following model of
the candidates.

Ar alternative justification for the use of expected plurality, Qp
- QB, in place of Ra is that the equilibrium described below is the same
in bothk cases because there are two candidates and symmetry. Basically,
we can show that Ra 2 1/2 if and only if Qa 2 Qb. Since equilibria
will occur only at Ry = 1/2 or Q, = Q. the two objectives produce the
same equilibrium. We adopt qQ, - Qy for simplicity. .
The candidates' objectives
In a large, two-candidate election, each candidate will try to maximize
expected plurality. In particular, the objective function of candidate
A is

W(A,B) = Q,(A,B) - Q,(A,B)
and that of candidate B is

V(A,B) = Qb(AIB) - Qa(A'B)
where (Pa,Pb,Qa,Qb) is a Rational Voters Equilibrium for the platform
Choices A,B.6 The observant reader will have already noticed a po-

tentia’ difficulty with this model--a rational voters equilibrium may
not be umique and, therefore, the mapping W(A,B) may not be a

———

6.
The Rational Voters! Equitibrium is defined in Section 11,
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function. We do have to confront this problem, but if W( ) and V( )iare
unigue, the above objective functions would point instantly to jthe
appropriate behavior for the candidates in their choice of a platform,
since this is a two-person zero-sum game for which game theorists are in’
agreement about a solution concept. We adopt the consensus solution

concept with modifications because of the nonuniqueness.

The candidates' behavior
In a two-candidate large election, candidates will choose platforms

(A*,8*) which satisfy

min W(A*,B*) 2 max W(A,B%) for all A i

min V(A*,8*) > max V(A*,B) for al1 B

where W(A,B) = [w 1Q, - Q, = v for some rational voters' equilibrium},
and V(A,B) = [vIQb -Q =V for some rational voters' equilibrium}. We
call (A*,B*) a (STRONG) RATIONAL ELECTION EQUILIBRIUM. ‘

If W( ) and V() are single-valued, this definition corresponds to
the noncooperative equilibrium (or maximin solution) of this game. Due
to the modification, we have called this a strong equilibrium since, if
the candidates choose these strategies, then even if candidate A could
choose from the myltiple set W( ) after changing her strategy, she could
do no better than now. Weaker equilibria may also exist since a risk-
averse candidate might choose to play a strategy A*, even though max
W(A,B*) > min W(A*,B*) for another A, in order to avoid a possible loss
if min W(A,B*) < max W(A*,8*). 1 have chosen the stronger version,
since a more strategic candidate would notice that even if such a loss
occurred he could regain at least a payoff of O by choosing A = B*.
Thus, no outcome which yields less than 0 to some candidate :should
survive as an equilibrium. A strong equilibrium has the properfy that

each player receives 0. - . .
PROPOSITION 7:  (VALUE). If (A*,B*) 1s a strong rational election
equilibrium then W(A*,B%) = V(A*,B*) = 0

PROOF: Given any B, since candidate A can always choose the same

™

L]
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platform, B, it must be true that min W(A*,B*) 20 Also, min
2 0. .
. V(A*,B*) 2 0. But it is easy to see that if

weW(A*,B*) then -weV(A*,B*) . Therefore, min W(A*,B*) > max W(A%,B*)
= 0.
» , Q.€.D.

This means that (A*,B*) is a strong equilibrium if and only if max
W(A,8*) <0 for all A and max V(A*,8) < O for all B. Even if there
are "weaker" equilibria, one suspects that only strong equilibria are
permanent. We, therefore, concentrate on them.

Iv. EQUILIBRIUM AND OPTIMALITY

In this section we show that if utility'functions are concave and have
continuous derivatives in A, and costs are distributed from zero, then
all equilibria can be characterized in a remarkably simply manner; the
candidates choose the same platform, the chosen platform maxi;izes
fu(A,x)g(x)dx, and no one votes. Thus, if an equilibrium exists there
fs a simple maximization problem by which it can be computed.
several examples at the end of this section.

To show these properties of equilibrium,
intermediate results. The first of these occurs because of the symmetry
of the model; candidates are essentially anonymous in all
except thei- platforms. *

We give
we need to establish

respects

PROPOSITION 8:  (SYMMETRY). If (A,B) is a strong rational election
equilibrium then so are (A,A), (B,A), and (B,B).

PROOF: Since (A,B) is an equilibrium, W(A,B) = 0 = V(A,B) from
proposition 4. For all D and w if weW(D,B) then w s 0. For a}l 0 and
v if veV(A,D) then v < 0, Further, we know that wcW(A,B) if and onl
i1f  -weV(A,B) if and only if weV(B,A). Now suppose tha{
t:::i:;n) for some D. Then, -weV(D,B) which implies that weW(D,B) and

re ws 0. Thus, (B,B) is a strong rational election equilibri-
um. The rest follows in a similar manner.

Now we take up t 1 -
wo lemmas which allow us to use cal
analysis of equilibrium. culus In the
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LEMMA 1: (A*,B*) is a strohg equitibrium if "and only if
fH((Pa/Z)lDI)I(D)g(x)dx < 0 for all A where D = u(A,x) - u(B*,x) and
where I(D) =1 if D > 0, I(D) =0 if D = 0, and I(D) = -1 if D < O,
PROOF: By definition (A*,B*) is a strong equilibrium if and only if

[y HU(P/2)(1D1))g(x)dx - [y H((P,/2)(1D1))g(x)dx < 0 (1)

for all A, This is true if and only if

[H((P72) (1D1)) 1(B)g(x)dx + [y [H((P,/2)(1DV)) (2)
- H((P,/2) (101)) ] g(x)DX < O.

for all A. This in turn is true if and only if
[H((P72) (101)) 1(D)g(x)dx < O 3)

for all A.

Statement (1) follows from the remark after Proposition 7 above.
Statement (2) follows by adding and subtracting
IHX_((Pa/Z)(IDI))g(x)dx to and from the left side of (1). To es-
tablish (3) takes more work. [ will prove that (2) impliies (3) and
leave the converse to the reader. Assume that
IH((PG/Z)(IDI))g(x)d > 0 and that (2) is correct for some A. It must
then be true that

[ (P /2){01) - H((P,/2)[D])] g(x)dx < O.

Therefore, P, < Py. Referring to lemma 3 in Section II we see that Q; <
Q3. But this implies that (1) is > 0 since (1) is Q; - Qy. This in
turn implies that (2) is > O which contradicts our initial assumption.
Q.E.D.
LEMMA 2: Given (A*,B*,Pa) where Pa is a voters' equilibrium for
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A* B*, If A* s "near" B* and if u:Cl and H:Cl and if their deriva-
tives are bounded, then

dfH((P4/2) [D]1(D))g(x)dx /dA =
fh((Pa/Z)lD)) [(dP,/dA)(D/2) + (P,/2)(dD/dA) ] g(x)dx.

PROOF: For any A and x such that I(D) £ 0, we find that

d(H((Py/2)|D]1(D))/dA =
h((Pa/2)|D|)(D/2](dPa/dA) + (Pa/2)(dD/dA)].

It follows that equality is also true if I(D) = 0.7 From Proposition 5

of the previous section dH/dA exists for all x, since A* is near B*,

The Lemm» then follows from the Lebesque Dominated Convergence Theorem.
Q.E.D.

Lemma 2 is valid even if A is n-dimensional where A is replaced by
A1 for i = 1,...,".

We now have all the tools needed to establish the main proposition
of this section.
Theorem 1: Given the distribution of voters' types, g(x) and h{c), such
that uecl, Hccl, their derivatives are bounded, h(0) > 0, and u fis
concave in A for all x and strictly concave for some x. If (A*,B*) is a
strong rational election equilibrium, then A* = B*, Py = Py =1, Q, - Q
= 0, and A* maximizes [ u(A,x)g(x)dx.

PROOF: From Proposition 8 we know that if (A*,B*} is an equilibrium
then so is (A*,A*). We concentrate on the latter. ‘Suppose that (A*,A%)
s an equilibrium. We know that max W(A,A*) < 0 for all A. From Lemma
1 it must be true that J = JH((Pa/2)1D1)I(x)g(x)dx < 0 for all A.

From Lemma 2 and the first-order conditions for maximization it must be
true, therefore, that

—_—

For arbitrary functions t(x), it #'(x) » a2 as x + 0 for all sequences of x, then

X .
©) = 3, let A + B so that D + 0, Then dH/dA + h{0)(§)(dU(A,x)/dx) for all such
Sequsnces.
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dJ/dA = 0 at A = A*, If A = A* then D = O, Pa = 1, and

h(0) [ (du(A*,x)/dA)g(x)dx = 0

since [u(A,x)g(x)dx {s a strictly concave function, A* maximizes that
function.

To finish the proof, we need to show that if (A*,B*) is an equi-
librium then A* = B*, Suppose not. From Proposition 8, both (A*,A*)
and (B*,8*) are equilibria. Therefore, both A* and B* are maximizers
of [u(A,x)g(x)dx. But u is strictly concave for some x which implies
that there is a unique maximizer; that is, A* = B*,

Q.E.D.
Theorem 1 fully characterizes the rational-election equilibrium if
it exists. In that equilibrium, even though no one votes -- thus a-

voiding all the nonproductive costs of voting -- candidates are led to
select a platform which maximizes a social-welfare function, the sum of
voters' utilities. The existence of voters who are on the margin’ of
voting, those with costs near O, leads candidates to take the prefer-
ences of these voters into account. Because of the linearity of utility
in the costs of voting, the change in the probability that a voter wiIl
vote, due to a change in a candidate's position, 1is “locaily” pro-
portional to the extra utility received by the voter if that candidate
is elected. It is always in the interest of the candidates to change
their position in the direction which maximizes the "aggregate marginal
utility of the marginal voters." . This leads them inexorably to a
position which maximizes the aggregate utility of the voters whose costs
are minimal.? '
Because of the similarity of this theorem to the fundamental-
welfare theorem that competitive-market equilibrium allocations are
pareto-optimal, I am finding it difficult to refrain from phrases 1ike

LY types and costs are correlated, that is if the density is g(x,c) instead of
g{x}h(c), then candidates wilt choose the pilatform A% which maximizes Iu(a x)g(x,0)dx,
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wthe invisible hand of the electorate." However, the fact that equi-
1ibrium platforms maximize a “social utility function" should not lead
the reader to conclude that election-equilibrium allocations are also
pareto-optimal. The next few examples help to illustrate this and other
implications of the model.

Example 1: Suppose there is a one-dimensfon issue space and that the
class of utility functions which any voter can have is given by u(A,x) =
-|A-x|. x is usually interpreted to be voter x's ideal platform. For
this type of example, traditional theory tells us that the election
equilibrium will be the ideal platform of the median voter,
A = x* where f g(x)dx = 1l/2. Let us calculate the rational-e-
lection equilibrium. A* will maximize [u(A,x)g(x)dx = [-|A-x|g(x)dx.
It is easy to see that A* will also be the median of the density g(x).
The two theories yield the same predicted-equilibrium platform, although
turnout is predicted to be 100X by the traditional theory but 0% by this
theory. .

Example 2: Let us now look at a well-used example. Suppose that
preferences over a one-dimension fssue space are given by the Type-1
utility functions, u(A,x) = -(A-x)z. In this case traditional theory
still predicts that the platform will be the median voter's ideal
platform. The ratiqnal-election equilibrium is, however, the mean
voter's 1{deal platform. That is, A* maximizes [-(A - x)z g(x)dx.
Differentiating, one gets [-2(A - x)g{x)dx = 0. From this, we know that
JAg(x)dx = [xg(x)dx or A = [xg(x)dx, the mean of g(x).

This simple example illustrates that there is absolutely nothing
sacred about the median voter.? One might just as easily be concerned
about the mean or, indeed, any other moment. For example, if u = -(A-
x)b then the (b-1)st moment is the equilibrium platform. The predicted
equilibrium platform depends on the composition of the class of utility
functions. An important implication of this and the prior example is
that functional forms are important. The functions -|x - A| and -(x -

—

9, ..
Hinich (1977), Coughlin and Nitzan (1981), and Coughlin (1983a) aiso find the median

+ . K
0 be unimportant when uncertainty is included in the voting model,
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A)2 each represent the same ordinal risk-free preferences on the set of
A.  However, they do represent different attitudes towards risk and
different indifference surfaces between c and A. These differences are
reflected in different equilibria. The intensity of preference for A as
opposed to c, as measured by the willingness to vote, is what drives the
resuit.

One other fact to note in this example: a multipie issue space will
not eliminate this equilibrium. [If A and x are, say, n-dimensional,
then the equilibrium is the mean of the multivariate distribution
g(x). These remarks reinforce the insights of Hinich (1978) that (a) in
the presence of uncertainty functional forms are important and (b)
quadratic-loss functions can imply that the mean ideal platform is the
two-candidate equilibrium. Hinich bases his model on voters' errors in
perceptions of candidates. My model shows that his conclusions hold
even where errors are not present.

Example 3: Finally, let us look at a simple application of this theory
and consider what happens if the election is held to decide the allo-
cation of a public good and the assignment of the taxes needed to pay
for that good. Let u(y,I,x) be the utility of voter x for the public-
good level, y, when that voter's income is I. We assume that x and I
are independently distributed according to r(x) and s(I). Platforms
will be of the form (y,t( )) where the function, t(l), indicates the tax
to be paid if income is I. I am assuming that taxes cannot be placed
directly on the unobservable x. If the cost of the public good is C(y),
we require that [[ t(I)r(x)s(I)dldx = C(y) for all platforms -- no
deficit or surplus financing is allowed. Given this model, we know
that, in a rational-election equilibrium, y and t( ) maximize [fu(y,I -
t(I),x)r(x)s(I)dldx subject to the above constraint. Letting L be the
Lagrangian multiplier associated with the constraint, it follows from
first-order conditions that

dlf[ uy,I-t(I),x)r(x)s(1)dldx]/dy - L[dC(y)/dy] = O,
- (1) [(du(y,I-t(1),x)/dI)r(x)dxs + L(I)[r(x)dx s = O

for all | and

29
Cly) = [] t(I)r{x)s(I)dIdx.

Let I* solve [(du(y,I*,x)/dI)r(x)dx = L [r(x)dx. The second e-
quation above implies that in equilibrium I - t(I) = I* for all I; that
is, t(I) =1 - }*. Everyone's after-tax income will be identical --
income is redistributed towards the mean. Using the constraint, we find
that everyone's after-tax income is I* = (RM - C(y))/NR where N =
Js(1)dI, R = [r(x)dx and M = [Is(I)dI. Turning to the first of the
first-order conditions, it can be shown that if d(du/dI)/dx = 0, that is
if du/dI is constant over all x, then

L = dU(y,I*,x)/dI
and

N [ (du/dy)/(du/di) r(x)dx = dC/dy.
This is simply the Samuelson-Lindahl first-order condition for the
Pareto-optimal allocation of the public good: the sum of marginal rates
of substitution equals marginal cost. Thus, we conclude that if the
post-tax marginal utility of income is independent of the voter's type,
then large two-candidate elections allocate resources efficiently.
There are no "free riders" in this situation.'0

Examples of utility functions for which d(du/dI)/dx = 0 can be
given:

viy,x) + I
v(y,x) + w(u,I), and, as a special case,
=xlny+Inl.

e € o
n

I leave it to the interested reader to show that if income and type
are not independent, then the efficiency disappears and redistribution
will no longer require equal post-tax income. One can also show that if
costs of voting and income are positively correlated, as is sometimes
argued, then 1ow-1ncome types will have a larger impact on redistri-

—_————
10 . .
c A side issue: since this case covers utility functions without income effects, it
f:Vers all situations covered by the Demand-Revealing Mechanisms. Theretore, it dominates
2t method for social choice,
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bution.

These three examples are only a small indication of the powerful
use one can make of the rational-election equilibrium. I am sure the
eager reader can provide many more.

To prove that all the above is not vacuous, we move next to the
question of existence.

V. EQUILIBRIUM AND EXISTENCE

In the traditional theory of majority-rule equilibrium with no ab-
stentions, existence of equilibrium is an unusual occurrence. One
implication is that we cannot rely on theorems which assume existence.
For example, local public-goods theories using the median voter should
be highly suspect; the results are likely to be vacuous. The equilibr1-
um described in this paper, on the other hand, exists in many cases.
These equilibria can potentially provide the foundation for many mode1s
which make social choices by majority-rule elections.

In the last section we proved that if A* were a rationa]-election
equilibrium, then A* maximized aggregate utility. If we could prove the
converse, that if A* maximizes aggregate utility then A* 1s a rationql
election equilibrium, we would be dope since the appropriate compactness

and contipuity conditions which ensure the existence gfgn maximum (the °

Weierstrauss Theorem) are well- known.; Unfortunately; the converse is
not true without additfonal conditions, on the densities g and h. H .It

is our task to delineate as much as possible the set, of dis;ributions,

for which the following is true: : ;
(S) 1if A* solves max Ju(A, x)g(x)dx. then A* 15 a. rational-e1ect10n
equilibrium. ; . :

If we knew for whlch (g,h) the function H(A B) were concave 1n
A and convex in B, with V(A B) behaving symmetrica\!y. we would be
done, since under these conditions the game- theoretic solution to the

”Econo-lsn will, notice that this phenomenon also srises when considering fthe
welfare theorams about competitive equilibris,

" commodated.

" PROPOSITIOK 10:

k)1
candidates’ problem is known to exist. Unfortunately, one cannot take
this approach.  Remember that W(A,B) = Q, - Q, where Q, =
xsH((Pq /2)(0))g(x)dx and Qy = [¢-H((Pp)(-D))g(x)dx and where D is
concave in A and convex in B from the concavity of u (leaving aside the
pehavior of Pa‘and P, for the moment). If H is a concave function of ¢
then Q, s concave, but we cannot tell about Q, which, in this instance,
is a concave function of a convex function. If H is convex, then we
have a symmetric problem since -Q, is concave, but we can ;ay nothing
about Q. Only if H is linear, both concave and convex, can we discuss
the concavity properties of W. We capture this intuition in the next
proposition.

PROPOSITION 9:
is true.
PROOF: Let J = IH(PQIZ)IDI)I(D)g(x)dx = I(l/k)(Pa/Z)IDII(D)g(x)dx =
[(1/K) (P,/2) 0G(x)dx. At A*, the maximizer, letting D = u(A,x) -
u(A*,x), we see that J = 0. At any other A, J s 0. Referring to lemma
1 we now conclude that A* is a rational-election equilibrium.
qQ.E.D.
Absolutely no conditions have been placed on g. That is, we need
not worry about single-peakedness, symmetry, unimodality, or unidi-
mensionality, Any density over concave-utility functions can be ac-
The second thing to notice {s that we have been precise
An obvious QUestion is whether (S) is true when h is .not
The answer 1s "no" if we require all g to be accommodated.

If h( ) 1s the uriform density on {0,k], k > 0, then (S)

about h.
uniform.

(S) 1s true fqr‘all g if and only 1f h is uniform. .
PROOF ; Thek"if" 1s simp]y Proposttlon 9. We prove the “onlj ife
statement. .
Suppose we have a nonuniform h, an A, a g and an A* such that A*
solves maxfu(A,x)gdx and such that [H((P,/2)|0|)I(D)gdx s O when D =
u{A,x) -~ u(A*,x). . If there are no such g, h, and A then we are done,
since there will then be no g for which (S) is true. I[f there are such
a g, h, and A for which (S) 1s true, we can show that there will be
another g for which (S) is not true, which would prove the pro-
position. . Thus, if we show that we can perturb g to g' such that [g'Ddx
s 0 and [H((P,/2)|D|)I(D)g'dx > O, then we will have proven that (S) is
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false and the proposition is true.

The perturbation works as follows. Let S, be the set of x for
which D > 0 and H(c) > c/k, let 52 be those x for which D > 0 and H(c) <
c/k, let S3 be the x for which D < 0 and H(c) > c/k, and let S4 be the
set of x such that D < 0 and h{c) < c/k. We make g larger on $; and S3
and smaller on S, and S4 by letting g'(x) = g(x) + e; when xeS;, such
that fe; dx + fep dx + [ej dx + feq dx = 0, such that ey f0dx = e,[Ddx =
e3f0dx + eqf0dx < 0, and such that e /H((P4/2)0)1(D)dx + epfHIdx +
eiHIdx + e4[HIdx > 0. The careful reader can check to see that as long
as H is is not uniform, this perturbation will be possible, since the
sets Sy will be nonempty.

Q.E.D.

Proposition 10 informs us that if we want a simpie-existence
theorem and we want it to be applicable to all possible preference
patterns, we must restrict our attention to uniform distributions of
costs. Suppose, instead, we want a theorem applicable to all distri-
butions of costs. The answer is similar to that in Proposition 10 --
statement (S) is true for all cost distributions if and only if we
severely restrict the possible preference distribution g. [In order to
see why, let us first define the derived distribution of utility differ-
entials. Let J(r) = IX(r) g(x)dx where X(r) = [x|u(A,x)-u(A*,x) < rl,
and let j(r)dr = dJ(r). Finally let I(r) = j(r) -j(-r) for all r 2 0.
It can be shown that A* maximizes Ju(A,x)g(x)dx if and only if

[ ri(r)dr < 0 for all A. T (5.1)
It can also be shown that expected plurality W(A,A*) =

[5 (WP /2)r)/rlrl(r)dr. (5.2)

Statement (S) 1is true when (5.1) implies that (5.2) is less than or
equal to 0. Therefore, in order for statement (S) to be true, the
function H((P,/2)r)/r cannot weight r relatively more heavily when 1(r)
> 0 than when 1(r) < 0. Notice that an equal relative weighting occurs
exactly when H is uniform. If we require that (S) be true for all
possible h, then we must not allow 1(r) > 0, for otherwise there will be
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at least one H which weights 1(r) incorrectly. We capture all of this
in the following:

PROPOSITION 11: (S) is true for all h if and only if le(r)dr < 0 for
all z > 0, and all A at A*,

PROOF: (IF) Let (5.1) be true and let zy = sup (r|l(r) > O}. If
1(r) < O for all r, then we are done since [(H/r)rl{r)}dr < O.
Therefore, we consider the case for which I(r) > 0 for some r < =, If
z) = =, then there is a z' such that fz.l(r)dr > 0. But this is im-
possible by hypothesis. Thus, we need only consider cases for which z;

< o

Let zp = sup {r|0 s r < 2, I(r) > 0}. let Iy = [a},=] and I, =
(zp,21). Since Izl(r)dr < 0, it follows that II 1(r)dr < O.
2
Further, since H is a distribution function, H(kz) 2 H(kz{) if z 2 2)

and H(kz) < H(kz;) if z < z;. Therefore, letting p = P,/2,
21
fH(pr)1(r)ar = [ tH(pr)t(rydr + [ HBrIL)r < HGp(z) f1(r)er < 0.

One can iterate this proof for all z; until z4 = 0.

(only if) Suppose that [,.1(r)dr > O for some z* > 0. let H''(z2)
= 1 if 2 2 2z and = O if 2z < 2% Then

I{H"((Pa/Z)r)/r}l(r)dr = f1(r)dr > 0.  But then A* cannot maximize
fu(a,x)g(x)dx.
Q.E.D.

In the proof of Proposition 11, we used a distribution of costs,
H'' which is very discontinuous at z*. We could, however, have found a
continuous H''' which s near to H'' and which is also appropriate.
Thus, the above proof would remain applicable with minor adjustments.'2

In this section, we have proven results only about the extreme
limits of the set of (g,h) for which rational-election equilibrium

—_—
12
A i B . .
costs ofs a flde note, the cost distribution, H'', used in this proot, which assumes equeal
voting known to all, is the same distribution used in Ledyard (1981), The fact

that this distr;
istribution causes the most difficuities f i i
K or existence rtl
theorem in that paper. partly explains the weak
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exists. That is, we have required existence to occur either for all g
or for all h. If we are willing to consider only some g or h, we should
do better. One can show that there is an open set of (g.h) ‘for which
existence obtains. In particular, if h is almost uniform or if g is
almost "symmetric," then'equilibrium will exist. [ suspect that there
is a large set of such (g,h), but its precise characterization remains
an open question,

Since the results of Coughlin; of Hinich, Ledyard. and Ordeshook;
of Hinich; and of this paper all point to the fact that myltidimensional
election equilibria exist more often than suspected and that they rarely
involve the median voter, one might speculate whether it is my as-

sumption of ratfonality or the role of uncertainty which derives these

results.'’ I suspect uncertainty is the key to existence and that some
form of ratfonality is the key to voptimality.” This remains a future
research issue.

VI. VARIATIONS ON A THEME

As I have presented this paper in many places, a number of issues have
been raised which seem to be easily handled within the framework of the
above model. Let me address these variations.

(1) Income effects

In the analysis of the rational voter I assumed that the cost of voting
entered the voter's utility function Jinearly. This assumption is not
necessary and can be eliminated. In particular, let u(A,0 +x) be the
utility received by the voter 1f A wins and this voter did not vote.
Let u(A,c,x) be the utility if A wins and this voter voted where x and C

are as in the original model. Assume that du/dc exists and is less than
zero (that is, an increase in the cost of voting . lowers x's utility,
ceteris paribus). Although the analysis is messier than above, one can

derive similar results. For example, at an equilibrium

et s

UTh.sc remarks are motivated by an insightful observation of Howard Rosenthal,
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h(0) fup{(A,0,x)/-u_(A,0,x) }g(x)dx = O,
This is identical to the earlier result if we “"normalize" marginal
utility by the marginal utility of voting costs at 0. That is, if an
equilibrium exists A* = B* and A* maximizes

J{U(A,Q,X) /U, (A*,0,x) ] g(x) dx.

I do not yet know how other results translate. For example, es-
tablishing existence appears to be more difficult.

(2) Negative voting costs

I am suspicious of anyone who claims to vote no matter what the issues
or how close the election. In almost every election there are
frictions, or other phenomena ignored by this model, which cause differ-
ences amond the candidates and which might lead low-cost voters to
vote. As far as I can tell there is still no common agreeme&k on the
facts about voter behavior. In spite of my skepticism‘it is important
for completeness of the theory to explore what would happen to the
equilibrium if there were indeed voters who derive utility from the act
of voting itself. It is easiest to model these as voters whose cost, c,
is negative. In the model of the calculus of voting, a voter with c < 0
will always vote for his most preferred candidate. With this in mind
consider now the equilibrium in which those voters with ¢ < 0 always
vote and those voters with ¢ > 0 behave as described above. If A = 8
then only the voters with ¢ < 0 will vote and, therefore, if A = B8 in
equilibrium 1t must be true that A is the ideal platform of the median
voter, the median of those who always vote, if one exists. (We know
from standard theory that existence can be problematical.) If c and x
are uncorrelated . and if i that median platform' also ' maximizes
Ju(A,x)g(x)dx, then A will be the equilibrium. However, if the median
either does not exist or does not equal the maximizer of aggregate
utility, then we must look elsewhere. It s an open question as to
whether an equilibrium even exists in this situation and, if so, what it
is. I am not even sure whether candidates would choose the same
platform in equilibrium. A}1 [ can conclude so far is that "irrational®
voters who derive utility from the act of voting create an externality
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which interferes with the selection by the election of a socially de-
sirable outcome. Perhaps we should educate voters not to be "citizens"
but to be selfish?

(3) Minimax-regret voters

Suppose some voters in the electorate use the minimax regret criteria of
Savage (made popular by Ferejohn and Fiorina 1974, 1975). The analysis
remains much the same, but the conclusions are slightly altered. As [
showed in Ledyard (1981), if we replace Py by 1/2 in the model of
rational-voting behavior we will have modeled the behavior of a minimax-
regret voter., If one then follows the model to its conclusion, one will
see that, in equilibrium A* = B*, no one will turn out, and A* will
maximize fu(A,x)[g(x) + (1/2)g*(x)]}dx where g( )} is the density of the
expected utility-maximizing voters and g¢*( ) {s the density of the
minimax-regret voters. [t appears that because minimax voters do not
care about closeness, they end up being weighted at half that of utility
maximizers in their effect on the outcome. At the margin, when A is
near B, they react more slowly to changes in platforms and, thus, lose
their effectiveness.

(4) Vote-maximizing candidates

It is sometimes argued that candidates care about other things than just
winning, This is another of those areas of disagreement in political
theory. There is no agreement on the factors which motivate candi-
dates. Although it is obviously of little use to a candidate to have a
large vote if that candidate does not win, some argue that candidates
should want to maximize votes, not the probability of winning. Several
of our conclusions change if that is the case. First, candidates will
not choose the same platform. If they did, one of them could increase
his votes (from 0) by simply moving away from the other candidate. (Of
course, this could lead to an election loss.) In equilibrium, if one
exists, turnout will occur with vote-maximizing candidates.

(5) Turnout

A major issue raised by many who see this model for the first time is
the lack of turnout in equilibrium. While I see this as good (the
deadweight loss of voting costs is avoided), many see this as a pre-
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diction of the model clearly contradicted by the facts. It must be
remembered that, because of the many possible frictions, actual e-
Jections will rarely match this theory. Among other things, most e-
jections are held to decide several contests simultaneously and politi-
cal activists, ignored in my model, operate to interfere with the natu-
ral forces. It'is true that single-issue elections with few activists
and with low stakes have little turnout. Examples abound but the normal
school-tax election is the obvious one. In a New Hampshire town an
election was held to fill the school board. Only one slate was on the
ballot. No one voted. I am not sure why the judges did not write in
their own names, but the moral is clear; when there is no choice it pays
not to go to the polls.'* _

1 am not sure what an appropriate example is for the model in this
paper, but the following provides ease of computation. Llet u = -(A-x)z.
H{ ) = l-exp(-ac), and let g( ) = (R)(b) exp(-bx). Going through the
appropriate manipulations one can, somewhat tediously, discover that
given the platforms A and B, the maximum turnout M( ) is

1 + (b/(aD-b))((exp-2aDS) - ((2aD/(ab+b))exp - bS)).
Here, D = (A-B)/2 and S = (A+B)/2.

It can be easily shown that M is near 1 if D,S,a,b are large. M is
near 0 if D,S,a,b are near 0. I have no idea what "reasonable" values
of these parameters are. Does anyone want to guess?

If one wishes to estimate equilibrium turnout, given A and B, one
must solve the following equation; let M(a,b,D,S) by the equation above,
then solve N = M{(a/N,b,D,S) for N. N/R will then be an estimate of the
percentage turnout since 1/N estimates P,.

These are but a few of the possibilities for refinement of the

model. Others follow which I think are as important, but of which I
know 11ttile:

—_———

14 ,

) Stop Press: For those who believe the probability of a tied election is
e™irically zero, let me report the outcome of the 1983 election for the Board of Trustees
ot Pasadens Community College: Gertmenia, 2592 and Miele, 2592, This followed a

Tecount, Both candidates argued against drawing ltots, the legislated action, as being
\lndemocrafic_
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(a)
(b)
(c)
(d)
(e)
(f)
(9)

sk R ]

Three-candidate electfons (and multiple-candidate)
Political activists and parties
Candidate choice and the role of primaries

Intertemporal considerations
Representative democracy and the responsiveness of the system

Multiple, simultaneous elections
Empirical estimation
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